<u>LETTERS</u>

A Unified Approach to the Four Azaindoline Families by Inter-/ Intramolecular Annulative Diamination of Vinylpyridines

Michael W. Danneman, Ki Bum Hong,* and Jeffrey N. Johnston*

Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States

Supporting Information

ABSTRACT: An operationally straightforward and metal-free inter-/intramolecular oxidative diamination of vinyl amino-pyridines is a common gateway to access all four azaindoline heterocycle families. 3-Amino azaindolines are formed by the reaction of *ortho*-vinyl *N*-tosyl anilines with electron-rich amines using phenyliododiaceate (PIDA) and an iodide additive.

he indole and azaindole ring systems are among the most ubiquitous and privileged heterocyclic structures found in both natural products and biologically active medicinal agents.¹ Consequently, preparation of these fused [5,6] ring systems is a highly explored area in organic synthesis.² In contrast, methods to construct azaindoline backbones are relatively scarce. The most accessible azaindoline backbone to date is the 7azaindoline core.³ Methods to prepare the 7-azaindoline motif include radical cyclizations,⁴ as well as base- and metalmediated annulations.⁵⁻⁷ However, only a limited number of synthetic methods en route to 6-azaindolines,⁸ 5-azaindolines,⁹ and 4-azaindolines¹⁰ have been reported thus far. To the best of our knowledge, the carbolithiation of *N*,*N*-diallyl amino pyridine derivatives¹¹ remains the only general synthetic approach reported that readily accesses all four isomeric azaindolines, doing so by (aryl) carbon-carbon bond formation.¹

We recently described a new method for the annulative diamination of alkenes leading to 3-aminoindolines via a hypervalent iodine-/iodide-mediated double carbon-nitrogen bond formation with electron-rich, Brønsted basic amines.¹³ This approach provides direct entry to diverse 3-aminoindoline derivatives with both mono- and disubstituted amines,¹⁴ without amine preactivation and protection. Its extension to azaindoline synthesis provided an opportunity to evaluate the effect of nitrogen substitution, introducing concerns about the compatibility of a Lewis basic pyridine nitrogen with the oxidative, electrophilic ("I+") conditions. Indeed, this modification caused unusual behavior in Bailey's work with 5- and 7- azaindolines.¹⁰ In this report, a unified approach to the four isomeric 3-aminoazaindoline ring systems is described.

Our initial optimization scheme paralleled previous studies in which *N*-iodosuccinimide (NIS) or a PIDA/halide additive combination was used in the presence of a primary amine.¹⁵

Our mechanistic constructs invoke the formation of an electrophilic nitrogen source that coexists with a nucleophilic amine. Although NIS alone can be effective in this capacity,¹⁶ only a minimal amount of desired product was isolated when combining it with vinyl aminopyridine **1** (Table 1, entry 1). Yet when an oxidant/halide additive combination (PIDA/KI) was used, the desired 3-amino-7-azaindoline **2a** was furnished in

Table 1. Annulative Alkene Diamination Using 3-Vinyl 2-Tosylaminopyridine

Ĺ	N N H $Oxid 1 \frac{1}{1} \frac{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}$	Ph-NH₂ ant, additive CH₃CN, rt		a
entry ^a	oxidant (equiv)	additive (equiv)	$(\%)^b$	yield (%) ^c
1	NIS (1.2)	_	100	11
2	$PhI(OAc)_2$ (1.5)	KI (1.0)	100	96
3	$PhI(OAc)_2$ (1.5)	ⁿ Bu ₄ NI (1.0)	100	80
4	$PhI(OAc)_2$ (1.5)	$NH_{4}I$ (1.0)	77	29
5	$PhI(OAc)_2$ (1.5)	_	0	-
6	-	ⁿ Bu ₄ NI (1.0)	0	-
7	_	KI (1.0)	0	-
8	$PhI(OAc)_2$ (1.5)	KI (0.3)	75	63
9	$PhI(OAc)_2$ (1.5)	KI (0.5)	88	65

^{*a*}All reactions were performed on a 0.2 mmol scale (0.1 M) with a standard 18 h reaction time. ^{*b*}Conversion was determined by ¹H NMR using CH_2Br_2 as an internal standard. ^{*c*}Isolated yield.

 Received:
 June 19, 2015

 Published:
 July 17, 2015

-

Organic Letters

96% isolated yield (Table 1, entry 2). Use of tetrabutylammonium iodide as the additive proved slightly inferior as azaindoline **2a** was afforded in 80% isolated yield, while ammonium iodide showed a significant drop in both reactivity and yield (Table 1, entries 3–4). Use of both components of the oxidant/additive combination proved vital, as no conversion to product was observed when starving the reaction of either the oxidant or the halide additive (Table 1, entries 5–7). The halide additive could be used catalytically, as 30 mol % and 50 mol % loadings of KI provided nearly full conversion and moderate yields, respectively (Table 1, entries 8–9). However, use of stoichiometric quantities of the additive provided the most generally effective conditions.

With optimal conditions in hand, we then sought to expand the 3-amino-7-azaindoline library and subsequently give rise to a 3-amino-6-azaindoline library. After seeing how well aniline performed under ideal reaction conditions en route to its corresponding 7-azaindoline **2a** (Table 2, entry 1), we turned

Table 2. Inter-/Intramolecular Diamination Route to 3-Amino-7-azaindolines

^aAll reactions were performed on a 0.150 mmol scale (0.1 M) with a standard 18 h reaction time. ^bIsolated yield. ^c2.0 equiv of PIDA, 1.2 equiv of KI, 3.0 equiv of amine used.

our attention to other aliphatic amines. Benzylamine and allylamine engaged in diamination, as 3-amino-7-azaindoline products 2b and 2c were afforded in 73% and 62% yields, respectively (Table 2, entries 2-3). Heterocyclic secondary amines were also tolerated in this reaction system, as thiomorpholine and morpholine were converted to their desired 3-amino-7-azaindolines 2d and 2e, albeit in depressed yields (Table 2, entries 4-5). Efforts then shifted toward generating a 6-aza-3-aminoindoline library using aromatic, primary, and secondary amines. Aniline and benzylamine proved tolerant in the 6-azaindoline system, as diamines 4a and 4b were furnished in 11% and 48% yields, respectively (Table 3, entries 1-2). N-Protected piperazines led to 3-amino-6-azaindoline products 4c-4e with good yields (Table 3, entries 3-5), allowing for subsequent unmasking of the piperazine under neutral, acidic, or basic conditions.

Our focus then centered upon successfully generating 5azaindoline and 4-azaindoline congeners in order to demonstrate that all four isomeric azaindoline families could be readily accessed. Vinyl aminopyridine 5, the precursor to 5-azaindoline diamines, proved to be an effective substrate as it was compatible with a wide array of amines. Aniline performed well under optimal conditions, as its 3-amino-5-azaindoline 6a was furnished in 81% yield (Table 4, entry 1). Benzylamine and derivatives were converted to 3-amino-5-azaindolines 6b–6d in

^{*a*}Reaction performed on a 0.040 mmol scale (0.1 M) with a standard 18 h reaction time. ^{*b*}Reactions performed on a 0.047 mmol scale. ^{*c*}Reactions performed on a 0.050 mmol scale. ^{*d*}Reactions performed on a 0.084 mmol scale. ^{*e*}Isolated yield. ^{*f*}83% Conversion estimated by ¹H NMR (CH₂Br₂ internal standard).

		$200 \text{ mol } \% \xrightarrow{(R)H} \overset{R}{\overset{N}{}} \overset{R}{\overset{N}{}} \overset{R}{} \overset{R}{\overset{R}} \overset{R}{} \overset{R}{\overset{R}} \overset{R}{\overset{R}} \overset{R}{} \overset{R}} \overset{R}{\overset{R}} \overset{R}{\overset{R}} \overset{R}{} \overset{R}{} \overset{R}{\overset{R}} \overset{R}{} \overset{R}{} \overset{R}{} \overset{R}{} \overset{R}{} \overset{R}{} \overset{R}} \overset{R}{} \overset{R}{} \overset{R}{} \overset{R}{} \overset{R}{} \overset{R}{} \overset{R}{} {} {R} {}} {} {R} {}} {} {} {} {} {} {}} {$	N-R 6 Ts
entry ^a	6	R	yield (%) ^b
1	а	Ph	81
2	b	CH ₂ Ph (benzylamine)	43
3	с	CH ₃ C ₆ H ₄ CH ₂ (4-methylbenzylamine)	45
4	d	FC ₆ H ₄ CH ₂ (4-fluorobenzylamine)	51
5	e	$(CH_2)_3OMe$ (3-methoxypropylamine)	48
6	f	CH ₂ CH ₂ C ₆ H ₅ (phenethylamine)	48
7	g	C ₅ H ₉ O (4-aminotetrahydropyran)	33
8 ^c	h	³ CH ₂ C ₅ H ₄ N (3-picolylamine)	64
9	i	C ₄ H ₈ S (thiomorpholine)	34

^{*a*}All reactions were performed on a 0.075 mmol scale (0.1 M) with a standard 18 h reaction time. ^{*b*}Isolated yield. ^{*c*}Reaction performed on a 0.2 mmol scale.

43-51% yield (Table 4, entries 2–4). Alkyl amines including 3methoxypropylamine and phenethylamine performed similarly (Table 4, entries 5–6). Other primary amines such as 4aminotetrahydropyran and 3-picolylamine gave rise to their corresponding 3-amino-5-azaindolines **6g** and **6h** in 33% and 64% yields respectively, when subjected to standard conditions (Table 4, entries 7–8). Additionally, a secondary amine in thiomorpholine proved tolerant as 5-azaindoline **6i** was afforded, but in lower yield (Table 4, entry 9).

Development of the 4-azaindoline library was straightforward and suitable with aromatic, primary, and secondary amines. Aniline and 4-*tert*-butylaniline were successfully converted to their corresponding 3-amino-4-azaindoline 8a and 8b in 70% and 41% yields, respectively (Table 5, entries 1–2). BenzylTable 5. Inter-/Intramolecular Diamination Route to 3-Amino-4-azaindolines

^{*a*}All reactions were performed on a 0.150 mmol scale (0.1 M) with a standard 18 h reaction time. ^{*b*}Isolated yield. ^{*c*}2.0 equiv of K_2CO_3 used. ^{*d*}51% Conversion estimated by ¹H NMR (CH₂Br₂ internal standard).

amine performed well, as its 4-azaindoline (8c) was furnished in good yield (Table 5, entry 3). Other primary amines in the form of cyclopentylamine and phenethylamine also proved compatible under optimal conditions, as diamines 8d and 8e were afforded in 59% and 68% yields, respectively (Table 5, entries 4-5). Secondary amines in piperidine and ethyl isonipecotate were also tolerated in this reaction system, as 4azaindoline diamines 8f and 8g were isolated in modest to good yields (Table 5, entries 6-7). N-Protected piperazines led to 3amino-4-azaindolines 8h and 8i in good yields (Table 5, entries 8-9), allowing for subsequent unmasking of the piperazine under both acidic and basic conditions. Further success with piperazines was demonstrated when N-cinnamyl piperazine provided a 66% yield of 4-azaindoline 8j (Table 5, entry 10). Lastly, the HCl salt of glycine methyl ester delivered 3-amino-4azaindoline 8k (Table 5, entry 11). For this particular case, K₂CO₃ was incorporated in the reaction system with the sole purpose of liberating the free base of the glycine methyl ester. This modification had little or no effect on reaction progression, as azaindoline 8k was cleanly isolated in 63% yield. This entry demonstrates that amino acid derivatives can be readily incorporated into azaindoline motifs.

In summary, we have developed a hypervalent iodine(III)assisted direct diamination reaction to access all four of the 3amino azaindoline families. This unique approach provides rapid, convergent access to a diverse range of *vic*-diamines using commercially available amines.

ASSOCIATED CONTENT

Supporting Information

Complete preparatory and analytical data for all new compounds. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/ acs.orglett.5b01783.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: ki.b.hong@vanderbilt.edu.

*E-mail: jeffrey.n.johnston@vanderbilt.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Science Foundation (CHE 1153003) for support of this work.

REFERENCES

(1) Somei, M.; Yamada, F. Nat. Prod. Rep. 2004, 21, 278. Kuethe, J. T.; Wong, A.; Qu, C.; Smitrovich, J.; Davies, I. W.; Hughes, D. L. J. Org. Chem. 2005, 70, 2555. Van Zandt, M. C.; Jones, M. L.; Gunn, D. E.; Geraci, L. S.; Jones, J. H.; Sawicki, D. R.; Sredy, J.; Jacot, J. L.; DiCioccio, A. T.; Petrova, T.; Mitschler, A.; Podjarny, A. D. J. Med. Chem. 2005, 48, 3141. Badland, M.; Devillers, I.; Durand, C.; Fasquelle, V. r.; Gaudillière, B.; Jacobelli, H.; Manage, A. C.; Pevet, I.; Puaud, J.; Shorter, A. J.; Wrigglesworth, R. Tetrahedron Lett. 2011, 52, 5292.

(2) Cacchi, S.; Fabrizi, G. Chem. Rev. (Washington, DC, U. S.) 2005, 105, 2873. Humphrey, G. R.; Kuethe, J. T. Chem. Rev. (Washington, DC, U. S.) 2006, 106, 2875. Popowycz, F.; Merour, J.-Y.; Joseph, B. Tetrahedron 2007, 63, 8689. Popowycz, F.; Routier, S.; Joseph, B.; Merour, J.-Y. Tetrahedron 2007, 63, 1031. Song, J. J.; Reeves, J. T.; Gallou, F.; Tan, Z.; Yee, N. K.; Senanayake, C. H. Chem. Soc. Rev. 2007, 36, 1120. Merour, J.-Y.; Routier, S.; Suzenet, F.; Joseph, B. Tetrahedron 2013, 69, 4767.

(3) Jakhontov, L. N.; Krasnokutsaya, D. M.; Peresleni, E. M.; Sheinker, J. N.; Rubtsov, M. V. Tetrahedron 1966, 22, 3233. Frissen, A. E.; Marcelis, A. T. M.; van der Plas, H. C. Tetrahedron Lett. 1987, 28, 1589. Taylor, E. C.; Macor, J. E.; Pont, J. L. Tetrahedron 1987, 43, 5145. Taylor, E. C.; Pont, J. L. Tetrahedron Lett. 1987, 28, 379. Frissen, A. E.; Marcelis, A. T. M.; Van Der Plas, H. C. Tetrahedron 1989, 45, 803. Adam, W.; Saha-Möller, C. R.; Zhao, C. G. J. Org. Chem. 1999, 64, 7492. Sanders, W. J.; Zhang, X.; Wagner, R. Org. Lett. 2004, 6, 4527. Majumdar, K. C.; Basu, P. K.; Mukhopadhyay, P. P. Tetrahedron 2005, 61, 10603. Sánchez, A.; Núñez, A.; Burgos, C.; Alvarez-Builla, J. Tetrahedron Lett. 2006, 47, 8343. Suwa, A.; Konishi, Y.; Uruno, Y.; Takai, K.; Nakako, T.; Sakai, M.; Enomoto, T.; Ochi, Y.; Matsuda, H.; Kitamura, A.; Uematsu, Y.; Kiyoshi, A.; Sumiyoshi, T. Bioorg. Med. Chem. Lett. 2014, 24, 2909. Takai, K.; Inoue, Y.; Konishi, Y.; Suwa, A.; Uruno, Y.; Matsuda, H.; Nakako, T.; Sakai, M.; Nishikawa, H.; Hashimoto, G.; Enomoto, T.; Kitamura, A.; Uematsu, Y.; Kiyoshi, A.; Sumiyoshi, T. Bioorg. Med. Chem. Lett. 2014, 24, 3189.

(4) Radical cyclization using xanthate: Ly, T.-M.; Quiclet-Sire, B. a.; Sortais, B. t.; Zard, S. Z. Tetrahedron Lett. **1999**, 40, 2533. Bacqué, E.; El Qacemi, M.; Zard, S. Z. Org. Lett. **2004**, 6, 3671. Liu, Z.; Qin, L.; Zard, S. Z. Org. Lett. **2014**, 16, 2704. Radical cyclization using azomethine: Johnston, J. N.; Plotkin, M. A.; Viswanathan, R.; Prabhakaran, E. N. Org. Lett. **2001**, 3, 1009. Viswanathan, R.; Mutnick, D.; Johnston, J. N. J. Am. Chem. Soc. **2003**, 125, 7266. Srinivasan, J. M.; Burks, H. E.; Smith, C. R.; Viswanathan, R.; Johnston, J. N. Synthesis **2005**, 2005, 330.

(5) Davies, A. J.; Brands, K. M. J.; Cowden, C. J.; Dolling, U.-H.; Lieberman, D. R. *Tetrahedron Lett.* **2004**, *45*, 1721. Nguyen, H. N.; Wang, Z. J. *Tetrahedron Lett.* **2007**, *48*, 7460.

Organic Letters

(6) Desarbre, E.; Mérour, J.-Y. Tetrahedron Lett. 1996, 37, 43.

(7) Moss, T. A.; Hayter, B. R.; Hollingsworth, I. A.; Nowak, T. Synlett **2012**, 23, 2408.

(8) De Bie, D. A.; Ostrowica, A.; Geurtsen, G.; Van Der Plas, H. C. *Tetrahedron* 1988, 44, 2977. Dekhane, M.; Potier, P.; Dodd, R. H. *Tetrahedron* 1993, 49, 8139. Fayol, A.; Zhu, J. *Org. Lett.* 2005, 7, 239. Fayol, A.; Zhu, J. *Org. Lett.* 2005, 7, 239.

(9) Yakhontov, L. N.; Azimov, V. A.; Lapan, E. I. Tetrahedron Lett. 1969, 10, 1909. Kauffmann, T.; Fischer, H. Chem. Ber. 1973, 106, 220. Spivey, A. C.; Fekner, T.; Adams, H. Tetrahedron Lett. 1998, 39, 8919. Spivey, A. C.; Fekner, T.; Spey, S. E.; Adams, H. J. Org. Chem. 1999, 64, 9430. Wipf, P.; Maciejewski, J. P. Org. Lett. 2008, 10, 4383. Laot, Y.; Petit, L.; Zard, S. Z. Org. Lett. 2010, 12, 3426.

(10) Donati, D.; Fusi, S.; Ponticelli, F. Eur. J. Org. Chem. 2002, 2002, 4211. Leroi, C.; Bertin, D.; Dufils, P.-E.; Gigmes, D.; Marque, S.; Tordo, P.; Couturier, J.-L.; Guerret, O.; Ciufolini, M. A. Org. Lett. 2003, 5, 4943. Bailey, W. F.; Salgaonkar, P. D.; Brubaker, J. D.; Sharma, V. Org. Lett. 2008, 10, 1071.

(11) Bailey, W. F.; Salgaonkar, P. D.; Brubaker, J. D.; Sharma, V. Org. Lett. 2008, 10, 1071.

(12) See also: Zard, S.; Bacqué, E.; El Qacémi, M. *Heterocycles* 2012, 84, 291.

(13) Hong, K. B.; Johnston, J. N. Org. Lett. 2014, 16, 3804.

(14) Newhouse, T.; Lewis, C. A.; Eastman, K. J.; Baran, P. S. J. Am. Chem. Soc. 2010, 132, 7119.

(15) A standard amount of excess amine (1 equiv) was used in these studies as a protocol to apply broadly. Similar outcomes can be achieved with a stoichiometric amount of amine.

(16) Danneman, M. W.; Hong, K. B.; Johnston, J. N. Org. Lett. 2015, 17, 2558.

Letter